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PREFACE 

The ma te r i a l  contained in th is  document r ep re sen t s  a port ion of the f inal  

r epo r t  documentation fo r  the Phase  I11 Nuclear Shuttle Sys tem Definition 

Study. The study effort  was per formed  a s  a 12-month extension to the existing 

Nuclear Flight Sys tem Definition Study Contract  (NAS8-24714), with the objec- 

tive of establishing Phase  A conceptual definition for  two c l a s s e s  of reusable  

nuclear  shuttle concepts.  The f i r s t  concept c l a s s  i s  charac te r ized  a s  a 33-ft- 

d i ame te r  configuration that  i s  launched integral ly  to orbi t  by a Saturn V IIVT-21 

vehicle. The second concept c l a s s  i s  charac te r ized  a s  a modular configuration 

which i s  assembled  in e a r t h  orbi t  f r o m  modules c a r r i e d  to orbi t  in a space 

shuttle. 

The final  r epo r t  documentation ha s  been organized to provide separable  

information fo r  the two concepts, where  appropr ia te ,  and to combine repor t  

ma te r i a l  common to both concepts in  s ingular  documents.  The total  docu- 

mentation fo r  the study i s  l i s ted below, with th is  document identified in the 

left  margin .  
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Section 1 

INTRODUCTION 

The advancement  of space  technology r ep re sen t ed  by nuclear  rocket  propulsion 

h a s  long been recognized.  E a r l y  development t e s t s  began with the success fu l  

KIWI s e r i e s  in  1959. The p rospec t  of developing a success fu l  nuc lea r  rocket  

s tage  was  enhanced when the NRX-A6 r eac to r  t e s t  achieved 1 hour  of 

operat ion a t  ful l  power in December  1967. 

The leading p r o g r a m  in  future  NASA s y s t e m  development i s  the space  shuttle, 

which p r o m i s e s  significant reduct ions  in  t r anspor ta t ion  cos t  to  e a r t h  orbi t  

through the introduction of reusabi l i ty .  The per fo rmance  capabil i ty of the 

nuclear  engine will provide the next ma jo r  s t ep  in the evolution of space  

t ranspor ta t ion  sy s t ems .  The reusab le  nuc lea r  s tage  (RNS) extends the 

economics  of reusabi l i ty  to m i s s ions  beyond e a r t h  orbit .  The RNS, l ike the 

space  shuttle, i s  conceived a s  a mul t ipurpose  t ranspor ta t ion  sy s t em.  Ini- 

tially, i t  would s e r v e  a s  a n  in te rorb i t a l  shuttle ( p r ima r i l y  lunar  and geosyn- 

chronous o r b i t s )  and provide injection fo r  unmanned probes .  In th is  ro le  and 

operat ing in conjunction with the space  shuttle, the RNS would reduce 

t ranspor ta t ion  cos t s  to lunar  o rb i t  by a n  o r d e r  of magnitude below Saturn  

Apollo. The high per fo rmance  of the RNS would be important  f o r  economical  

pe r fo rmance  of ambi t ious  unmanned mi s s ions  such a s  a M a r s  su r face  sample  

r e t u r n  probe o r  delivering l a rge  space  s ta t ions  to lunar  o r  geosynchronous 

orbi t .  In a n  evolutionary space  p rog ram,  the RNS would provide unmatched 

capabil i ty fo r  pe r fo rming  manned planetary  mi s s ions  a t  t r anspor ta t ion  cos t s  

comparab le  to the Saturn  Apollo lunar  miss ion .  

This  document de sc r i be s  the Phase  I11 Nuclear  Shuttle Definition Study which 

was  conducted a s  a 12-month extension to the Nuclear Flight  Sys tem 

Definition Study Contract  (NAS8-247 14). The in i t ia l  Phase  I  study was  

d i rec ted  toward defining a nuclear  flight propulsion module (NFPM)  to be 

used a s  a th i rd  s tage  on Saturn  V in  a expendable mode and the identification 

of r equ i r emen t s  f o r  evolution to a n  advanced configuration suitable for  

reusab le  shutt le  a n d / o r  manned planetary  applicat ions.  Both Saturn-  

der ivat ive  and new s tage concepts  we re  identified. The Phase  I1 effort  was 

d i rec ted  toward definition of RNS concepts which would opera te  in the shuttle 



mode based in low e a r t h  orbi t .  Following identification of a t t rac t ive  RNS 

concepts in Phase  11, the cu r r en t  study phase completed Phase  A definition 

fo r  two RNS concepts.  The f i r s t  concept i s  charac te r ized  a s  a 33-f t -diameter  

configuration that  i s  launched to orbi t  by a Saturn V INT-21 vehicle. The 

second concept i s  cha rac t e r i zed  a s  a modular  configuration which i s  assembled  

in e a r t h  orbi t  f r o m  modules c a r r i e d  to orbi t  in the space shutt le.  

Section 2 

STUDY OBJECTIVES 

The overa l l  objective of th is  study was to es tabl ish  P h a s e  A conceptual 

definition f o r  two c l a s s e s  of reusable  nuclear  s tage (RNS) concepts:  a  33-ft- 

d i ame te r  configuration and a modula r  configuration based on 15-f t -diameter  

propellant  tanks. Specific study objectives which we re  defined to m e e t  this  

goal a r e  shown below: 

A. Concept definition and evaluation 

1. Update miss ion  per formance  and t imel ines  

2. Develop a rel iabil i ty improvement  plan 

3. P e r f o r m  operat ions  ana lyses  

4. Define subsys tem and s y s t e m  design requ i rements  

5. Develop s y s t e m  support  requ i rements  

B, Sys tem t r ade  studies 

1. P e r f o r m  specific subsys tem design analysis  

2 .  Update flight s y s t e m  definition 

C. P r o g r a m  and s y s t e m  definition 

1. Final ize  requ i rements  definition 

2.  Document baseline s y s t e m  definitions 

3 .  Complete in tegrated p r o g r a m  plans 

4. P r e p a r e  in terface  recommendat ions  

5. Define safety and contingency plans 

6 .  Identify supporting r e s e a r c h  and technology 

7. Conduct engineering t r ade  studies to support  NERVA 

development 



P h a s e  I1 r e s u l t s  s e r v e d  a s  a  s t rong  b a s i s  f o r  P h a s e  I11 study t a s k s .  A m a j o r  

s tudy objec t ive  w a s  the  identif icat ion of opera t iona l  r e q u i r e m e n t s  and t h e i r  

t r a n s l a t i o n  into des ign  c r i t e r i a .  A t echn ica l  definition of both concepts  was  

made  which included s y s t e m  speci f ica t ions ,  eng inee r ing  drawings ,  

funct ional  s c h e m a t i c s ,  and s y s t e m  t radeoffs .  An in tegra ted  p r o g r a m  plan 

w a s  developed including development  schedu les  and c o s t s ,  manufactur ing  

plans,  fac i l i ty  r e q u i r e m e n t s ,  r e l i ab i l i ty  and quali ty a s s u r a n c e  plans,  and a n  

in teg ra ted  t e s t  plan. 

Sect ion 3 

RELATIONSHIP TO OTHER NASA E F F O R T S  

The m a j o r  suppor t  s y s t e m  f o r  the RNS i s  the space  shut t le ,  which p rov ides  

modula r  de l ive ry  to  o rb i t  and propel lant  r e supp ly  a s  a  t a n k e r  vehic le  

( s e e  F i g u r e  3-1).  It i s  the only suppor t  s y s t e m  c l e a r l y  r e q u i r e d  fo r  r e u s a b l e  

opera t ion  of a n u c l e a r  s t age  based  in  o rb i t .  While the nuc lea r  shut t le  p r o m i s e s  

to  have a m a j o r  log i s t i c  suppor t  r e q u i r e m e n t  function f o r  the space  shutt le ,  

c a r g o  bay s i z e  l imi ta t ions  m a y  s e r i o u s l y  af fec t  the o v e r a l l  economics  of the 

to ta l  t r a n s p o r t a t i o n  opera t ion .  It was  d e t e r m i n e d  in  the  study tha t  the 

r e q u i r e m e n t s  of o r b i t a l  suppor t  f o r  the  RNS a r e  min imal .  Such candidate  

fu tu re  space  s y s t e m s  a s  o r b i t a l  propel lant  depots ,  o r b i t a l  maintenance  

fac i l i t i e s ,  and r e m o t e  man ipu la to r  un i t s  a r e  not r e q u i r e d  f o r  the RNS. A 

space  tug could b e  used  to  suppor t  RNS a s s e m b l y  and payload handling, 

al though i t s  functions could be adequate ly  provided by a command  and con t ro l  

module f r o m  the RNS i t se l f .  A c h e m i c a l  l u n a r  l a n d e r  s t age  could be used  in  

suppor t  of the RNS a s  a  tug and f o r  d i sposa l  of NERVA and the propuls ion  

module.  

The se lec ted  mode of RNS opera t ion  i s  e s s e n t i a l l y  independent of the v a r i o u s  

space  s ta t ion  s y s t e m s  which have  been  cons ide red .  However, s o m e  space  

s ta t ion  e l e m e n t s  could b e c o m e  payloads f o r  the RNS. Although the  RNS h a s  

unique development  r e q u i r e m e n t s ,  i t  h a s  no b a s i c  feas ib i l i ty  ques t ions .  Thc 

des ign  i s  soundly b a s e d  on Sa tu rn  s t age  technology and wi l l  benefi t  d i r e c t l y  

f r o m  the long l i fe  s y s t e m  technology developed f o r  the space  shut t le .  



PROPELLANTIMA1 NTENANCE 5.-- -- LUNAR ORB I T  TO LUNAR SURFACE SHUTTLE 
DEPOT SURFACE BASE AND RBURN SHUTTLE 

Figure 3-1. Nuclear Shuttle System Operations 

Sec t ion  4 

METHOD O F  A P P R O A C H  AND P R I N C I P A L  ASSUMPTIONS 

The s tudy  p l an  w a s  f o r m u l a t e d  upon the  r e s u l t s  of the  p r e c e d i n g  N u c l e a r  

F l igh t  S y s t e m  Defini t ion S tudies .  In  the  p r e c e d i n g  s tud ie s ,  a  n u m b e r  of 

po ten t ia l ly  a t t r a c t i v e  c o n c e p t s  w e r e  ident i f ied  f o r  both expendable  and  

r e u s a b l e  l a u n c h  v e h i c l e s .  F i g u r e  4- 1 i l l u s t r a t e s  t h r e e  m a j o r  c l a s s e s  of t he  

c o n c e p t s  ident i f ied  i n  the  e a r l i e r  s t u d i e s .  The  f i r s t  ske tch ,  ident i f ied  a s  

C l a s s  1, i s  a  s ing le -modu le  con f igu ra t ion  su i t ab l e  f o r  l a u n c h  in to  o r b i t  by  the  

S a t u r n  W INT-21  l a u n c h  veh ic l e .  It would have  the  h ighes t  t r a n s p o r t a t i o n  c o s t  

t o  o rb i t ,  bu t  could  b e  expec ted  t o  have  the m a x i m u m  s t r u c t u r a l  e f f i c i ency  

and  m i n i m u m  redundan t  func t iona l  equ ipmen t .  C l a s s  2  r e p r e s e n t s  a  s y s t e m  

p laced  in  o r b i t  by a n  i n t e r m e d i a t e  s i z e d  expendab le  l a u n c h  v e h i c l e  o r  h igh  

weight  l i f t ing capab i l i t y  v e r s i o n  of the  s p a c e  shu t t l e .  T h e  t h i r d  a p p r o a c h ,  

des igna ted  C l a s s  3, l i m i t e d  a l l  m o d u l e s  t o  d i m e n s i o n s  tha t  could be t r a n s -  

p o r t e d  wi th in  the c a r g o  bay  of the s p a c e  shu t t l e .  



254 IN.  4 k 1 6 8  IN. 

CLASS 'l 

CQNTRQ k 

PROPELLANT 
MODULE 

MODULES 

3,149 IN. 

PROPULSION 
MODULE PROPELLANT 

MODULES 

MODULE 

CLASS 3 

CLASS 2 

Figure 4-1. Nuclear Shuttle Configurations (Phase I I) 

During the preceding s tudies ,  s e v e r a l  key e l e m e n t s  w e r e  defined which 

s e r v e d  a s  a  b a s i s  f o r  f u r t h e r  P h a s e  I11 ac t iv i t i e s .  T h r e e  of t h e s e  wil l  be d i s -  

c u s s e d  h e r e :  propuls ion  module,  maintenance  level ,  and C l a s s  3 configurat ion.  

The nuc lea r  engine i s  about 34 ft long. Th i s  al lowed a  s m a l l  propel lant  r u n  

tank to be  a s s e m b l e d  with the engine on the  ground a s  a n  i n t e g r a l  propuls ion  

module  which could be  launched within the 60 foot c a r g o  bay. The u t i l iza t ion  

of the propuls ion  module  r e su l t ed  in  the identif icat ion of a  hybr id  configurat ion 

f o r  c l a s s e s  1 and 2 of the RNS. S e v e r a l  a t t r a c t i v e  opera t ing  and des ign fea-  

t u r e s  w e r e  identif ied f o r  th is  unit  and a r e  de l ineated  below: 

o F a c i l i t a t e s  N E R V A  r e p l a c e m e n t  

o Simpl i f ies  o r b i t a l  docking in te r face  

o In te rmedia te  sh ie lded locat ion  f o r  engine a s t r i o n i c s  

o  Advantages a c c r u e d  f o r  propel lant  management  

o  Reduced des ign condit ions f o r  INT-21 launch 

o  Reduced t e s t  fac i l i ty  r e q u i r e m e n t s  



An addit ional  $28 mi l l ion  development  c o s t  was  identif ied f o r  the  hybr id  o v e r  

s t andard  configurat ion;  however ,  reduct ion  of t e s t  fac i l i ty  r e q u i r e m e n t s  could 

m o r e  than offset  th is  cos t .  Additionally, a  s t r u c t u r a l  evaluat ion  of the hybr id  

and s t a n d a r d  configurat ions f o r  a l l  c l a s s e s  of RNS r evea led  no m a j o r  s t r u c -  

t u r a l  penalty to the  hybr id  s y s t e m .  

This  r e s u l t  f o r  the C l a s s  1 s y s t e m  i s  a t t r ibu tab le  to a  l e s s e r  launch environ-  

m e n t  due to the s h o r t e r  length of the hybr id ,  and the m o r e  favorab le  g e o m e t r y  

of the hybr id  which conta ins  m o r e  propel lant  i n  h e m i s p h e r i c a l  and cy l indr ica l  

sec t ions  than in  l e s s  eff icient  conica l  sec t ions  ( F i g u r e  4-2). 

Maintenance l eve l  and a p p r o a c h  w e r e  inves t iga ted  in  P h a s e  11. Rep lacement  

a t  the  component ,  subsys tem,  and module l eve l  w e r e  studied.  In o r d e r  to  

s tudy a b r o a d  range  of concepts  in detai l ,  a  component  and s u b s y s t e m  r e p a i r  

and r e p l a c e m e n t  concept  was  evaluated  f o r  C l a s s  1 ( F i g u r e  4 - 3 )  and a module 

l eve l  f o r  the  C l a s s  3. In the f o r m e r  approach,  a  space  tug i s  docked to  the 

RNS, a subassembly  i s  r emoved ,  and a new one i s  ro ta t ed  and t r a n s l a t e d  

into i t s  p lace .  In the l a t t e r  concept ,  the comple te  f ront -end unit ( command  

RNS CLASS 1 

DOCK1 NG SYSTEM 

LAUNCH 
ENVELOPE 

RNS CLASS 1 HYBRID 
Figure 4-2. RNS Class 1 Confisurations 



Figure 4-3. Maintenance Concept-Removal and Replacement 

and con t ro l  module)  i s  r emoved  and rep laced  a f t e r  e a c h  miss ion .  F r o m  t h e s e  

s tud ies  i t  was  concluded that  maintenance  on the module level  was  a t t r a c t i v e .  

It p e r m i t t e d  des ign of a  command  and con t ro l  module with 90  pe rcen t  of the 

unre l iabi l i ty  of the RNS to be  mainta ined on the ground and mi.nimiza.tion of 

the n u m b e r  of unre l i ab le  e l e m e n t s  on propel lant  modules .  In P h a s e  I11 other  

s u b s y s t e m  r e p l a c e m e n t  concepts ,  including manned  opera t ions  and u s e  of a 

command  and con t ro l  module  on the C l a s s  1, w e r e  to be inves t iga ted  to 

a r r i v e  a t  a f ina l  ma in tenance  l e v e l  s t r a t egy .  

S e v e r a l  r e q u i r e m e n t s  d ic ta ted  the  C l a s s  3 configurat ion.  T o  m i n i m i z e  Lhe 

shie ld  weight,  a  t andem s e t  of propel lant  tanks would be  p re fe rab le .  However,  

con t ro l  and s tabi l i ty  c r i t e r i a  would d ic ta t e  a  s h o r t ,  squa t  vehicle.  P h a s e  11 

s tud ies  a r r i v e d  a t  a  f o u r - t i e r  t a n d e m  configurat ion with four  outboard  tanks  

suppor ted  off the second and th i rd  t i e r  t anks  in a p lana r  a r r a y .  I11 compar ing  

the  r e l a t i v e  movement  between tanks ,  evaluat ing r e q u i r e d  t o l e r a n c e s ,  and 

designing requ i s i t e  s t r u c t u r a l  docking m e c h a n i s m s ,  no r e q u i r e m e n t  f o r  a  

r ig id  space  f r a m e  o r  p l a t f o r m  was  identified. F u r t h e r  s tud ies  w e r e  to be 

p e r f o r m e d  in P h a s e  I11 to define the impac t  of a s s e m b l y  opera t ions  on the 

C l a s s  3 configurat ion.  
7 



This  s tudy concen t ra ted  on comple t ing  a  P h a s e  A definition of the se lec ted  

conf igura t ions  of both the C l a s s  1 and the C l a s s  3 concepts .  F i g u r e  4 -4  

dep ic t s  the P h a s e  I11 modula r  concep t s  to  be evaluated  on the b a s i s  of 

P h a s e  I1 r e s u l t s .  The C l a s s  2 s y s t e m  r e m a i n s  a s  a  potential ly a t t r a c t i v e  

concept .  However, NASA d e t e r m i n e d  a t  the beginning of th i s  s tudy that  

adequate  da ta  f o r  launch veh ic les  with the r e q u i r e d  weight lifting capabil i ty 

w e r e  not avai lable  to p e r m i t  a n  adequate  definition of the  s y s t e m .  T h e r e f o r e ,  

f u r t h e r  s tudy of th is  concept  w a s  postponed. 

The p r e s e n t  s tudy was  o rgan ized  into nine t a s k s .  The i n t e r r e l a t i o n s  of t h e s e  

t a s k s  a r e  i l l u s t r a t e d  in  the  study logic  d i a g r a m  of F i g u r e  4-5. 

The study was  s t a r t e d  by es tabl i sh ing a  r e f e r e n c e  configurat ion f r o m  e a c h  

of the two c l a s s e s  of concepts  b a s e d  on p rev ious  study r e s u l t s .  These  

concepts  w e r e  than subjec ted  to  de ta i led  opera t ions  and s y s t e m s  des ign  

a n a l y s e s  with the r e s u l t s  being used  to  make  changes  to the r e f e r e n c e  

concepts .  Extens ive  re l i ab i l i ty  and safe ty  a n a l y s e s  i n  the f o r m  of f a i l u r e  

m o d e  and e f f e c t s  ana lys i s  and fault  t r e e  a n a l y s e s  w e r e  p e r f o r m e d  i n  p a r a l l e l  

/' \ 
,/ COMMAND AND \\ 

/ CONTROLMODULE \ 

PROPULS I O N  
\ 

\\ CLASS I H ' W// / PROPELLANT \ 

MODULES 

CLASS 3 
PROPELLANT 
MODULES 

Figure 4-4. IPhase I I I Concepts Evaluated 
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Figure 4-5. Study Logic Diagram 

with the des ign  ana lyses  to a s s u r e  that  the s e l e c t e d  concepts  i n  addit ion 

to  having the n e c e s s a r y  p e r f o r m a n c e  would b e  s a f e  and re l i ab le .  

A s  the concepts  evolved, manufactur ing ,  t e s t ,  and launch r e q u i r e m e n t s  w e r e  

analyzed with defini t ive p lans  e s t ab l i shed  f o r  mee t ing  the r e q u i r e m e n t s .  These  

p lans ,  together  with the de ta i led  c o s t  da ta  that  w e r e  genera ted ,  w e r e  then used  

to f o r m u l a t e  the in teg ra ted  p r o g r a m  r e q u i r e m e n t s .  

Guidelines and Assumpt ions  

The r e f e r e n c e  lunar  m i s s i o n s  f o r  opera t ions  r epor t ing  p u r p o s e s  and w o r s t -  

condition des ign  ana lys i s  a r e  defined i n  Sect ion  5. 1. 

The f i r s t  f l ight  t e s t  and in i t ia l  ope ra t ing  capabil i ty (IOC) of the RNS wil l  be i n  

m i d  C Y  1979 and C Y  1981. In i t ia l  RNS des ign  concepts  wil l  r e f l ec t  a 1974 

s t a t e  of the a r t .  

The  s p a c e  shut t le  wil l  provide  logis t ic  suppor t  to the RNS. Two w e r e  

cons ide red :  

A. 25, 000-lb payload capabi l i ty  to 55-degree  incl inat ion and 270  nrni 

yielding 33, 000 l b  to 260 n m i  by 31. 5 d e g r e e  o rb i t .  
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B. 40, 000-lb payload capabi l i ty  to 55-degree  incl inat ion and 270 n m i  

yielding 50, 000 l b  to 260 n m i  by 31.5 d e g r e e  o rb i t .  

The c a r g o  bay of the s p a c e  shut t le  wi l l  b e  s i z e d  to have  a c l e a r  volume of 

15 f t  d i a m e t e r  by 60 f t  length. 

The p r o g r a m  mode l  wi l l  c o n s i s t  of luna r  shut t le  m i s s i o n s  only, wil l  c o n s i d e r  

2, 4, 6 ,  and 8 RNS fl ights  p e r  y e a r ,  and wil l  be 10 y e a r s .  The des ign  life 

t ime  f o r  the RNS wil l  b e  up to 3 y e a r s  in  space .  

The RNS wil l  be  capable  of withstanding the appl icable  na tu ra l  envi ronment ,  

dur ing  a l l  p h a s e s  of the m i s s i o n ,  a s  speci f ied  by NASA TM X-53865 and 

NASA TM X-53872. The m e t e o r o i d  shielding will  be des igned f o r  a t  l e a s t  a  

0, 995 probabi l i ty  of no tank pene t ra t ion  in one l u n a r  m i s s i o n  ( m a x i m u m  of 

45 days) .  The  RNS will  be  des igned to ach ieve  a re l iabi l i ty  of 0. 975 f o r  the 

i n - t r a n s i t  phase  of e a c h  flight.  

Pu l sed  shutdown radioact ive  decay hea t  r e m o v a l  on the RNS dur ing  a m i s s i o n  

will  be  used to the m a x i m u m  p r a c t i c a l  extent  f o r  f ina l  veloci ty a t ta inment ,  

m i d c o u r s e  c o r r e c t i o n s ,  a n d / o r  g r o s s  r endezvous  m a n e u v e r s .  

The RNS will  be  m a n - r a t e d .  All  c red ib le  s ingle  f a i lu re  m o d e s  o r  c red ib le  

combinat ions  of f a i l u r e s  and e r r o r s  which r e s u l t  i n  l o s s  of c r e w  and p a s s e n g e r s  

o r  unacceptable  r i s k  to  g e n e r a l  population g roups  will  be  e l imina ted  by des ign  

change a n d / o r  m i s s i o n  modificat ion.  No single f a i lu re  o r  c red ib le  combina-  

t ion of f a i l u r e s  and e r r o r s  will  p reven t  o r  p rec lude  opera t ion  of the NERVA 

engine in  the  e m e r g e n c y  mode.  

Tota l  radia t ion  dose  f r o m  the NERVA engine and p lume s o u r c e s  will  be  

l imi ted  to 10 R E M  p e r  p a s s e n g e r  and 3 R E M  p e r  c r e w  m e m b e r  p e r  round 

t r i p  shutt le  miss ion .  Payload a t tenuat ion  f a c t o r  wil l  be  a s s u m e d  to be 3. 

All c o s t s  wi l l  be normal ized  to G F Y  1971. An opera t iona l  c o s t  of $5 mi l l ion  

p e r  launch of the space  shutt le ,  and a n  INT-2 1 unit cos t  of $95 mi l l ion  and 

launch c o s t  of $12 mi l l ion  a r e  a s s u m e d .  A cos t  of $13 mi l l ion  i s  used f o r  the  

NERVA engine. 
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Section 5 

BASIC DATA GENERATED AND SIGNIFICANT RESULTS 

5. 1 MISSION APPLICATIONS AND OPERATIONS 

5. 1. 1 Miss ion Applications 

The p r i m a r y  RNS m i s s i o n  applicat ions a s  a lunar  in te rorb i t a l  shutt le .  

Secondary m i s s i o n s  fo r  i t  cons i s t  of a  geosynchronous in-orbi t  shutt le  and 

unmanned planetary  probes  per fo rmed  in a reusab le  shutt le  mode.  Detailed 

m i s s i o n  desc r ip t ions  and per fo rmance  data a r e  documented in the Miss ion 

Planning Handbook. 

The lunar  shut t le  m i s s i o n  provides  the ba s i s  f o r  RNS design r equ i r emen t s  in  

th is  study. Th is  m i s s ion  enta i ls  t r an s f e r  of c a rgo  and m e n  to and f r o m  a 

260 nmi  and 31.5-degree  inclination. The design mi s s ion  cons i s t s  of eight 

mains tage  burns ,  which provides f o r  plane rota t ion at  lunar  orbi t  inject ion 

and t r a n s e a r t h  injection (F igu re  5- 1). Th i r ty  deg ree  plane change maneuve r s  

w e r e  specif ied by NASA and w e r e  per fo rmed  in the throt t le  mode  because  of 

the s h o r t  engine operat ion t ime.  A four -burn  z e r o  plane change requ i rement  

1 TRANSLUNAR INJECTION 

2 LUNAR ORBIT INJECTION 

3 PLANE CHANGE (30 DEGREES), THROTTLE 

4 CIRCULARIZATION 

5 DEPARTURE ORB IT l NJECTl ON 

6 PLANE CHANGE (30 DEGREES), THROTTLE 

7 TRANSEARTH INJECTION 
108-HR 

8 EARTH ORBIT INJECTION TRANSFE 

24-HR CAPTURE 
DEPARTURE ORB 

(18 DAYS) 

Figure 5-1. Lunar Shuttle Design Mission Profile 



m i s s i o n  was  defined with a 54. 6-day repeat ing cycle.  This  l a t e r  profi le  was  

injected d i rec t ly  into a 60-nmi polar  lunar  orbi t  and was  used  a s  the s tandard 

mode  of operation.  F i g u r e  5-2 shows the per fo rmance  fo r  the two RNS 

configurations specif ied in  Sections 5. 2 and 5. 3 .  The r e f e r ence  mi s s ion  

cons iders  r e t u r n  of 20, 000-lb c r e w  module to ea r th .  F o r  th is  c a s e  the 

C la s s  1-H RNS can del iver  100, 000-lb payload to lunar  orbi t  f o r  the eight- 

bu rn  and 127, 000 lb for  the four -burn  mi s s ions ;  and the C la s s  3,  81, 000 lb 

and 108, 000 lb, respect ively .  F o r  the purposes  of this  study, a n  RNS 

propellant  capaci ty  of 300, 000 lb was  se lected.  However,  RNS payload-to- 

propellant  r a t i o  would benefit f r o m  a l a r g e r  s t age  capaci ty  resul t ing f r o m  

the re la t ively  heavy engine. F igu re  5-3 shows the payload del ivered to lunar  

o rb i t  for  the ca se  which r e t u r n s  a 20, 000-lb c r ew  module to e a r t h  orbi t  a s  

a function of propellant  capacity. Geosynchronous orbi t  payload de l ive ry  

capability i s  shown in F i g u r e  5-4. The RNS could be  used e i the r  by itself 

i n  a n  expendable o r  r e t r i evab l e  mode,  o r  where  i t  i s  r e t r i eved  and a n  

80, 000-lb propel lant  capacity space  tug i s  expended fo r  unmanned planetary  

mi s s ions .  The r e l a t i vepe r fo rmance  of eachof  these  modes  i s  shown i n  Fig- 

u r e  5- 5.  Typical  velocity r equ i r emen t s  for  unmanned mi s s ions  a r e  depicted.  

R53 

GN CONDITION 

DELIVERED PAYLOAD, PLD (1,000 LB) 

Figure 5-2. L.unar Shuttle Performance 



Figure 5-3. RNS Performance Versus Propellant Capacity 
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Figure 5-4. Geosynchronous Shuttle Performance 
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5. 1. 2 RNS Operations 

A m a j o r  port ion of the study was  devoted to operat ions  ana lyses  to es tab l i sh  

a b a s i s  f o r  the RNS design.  Major ca tegor ies  of operat ions  which w e r e  

evaluated we re :  ground and pre launch operat ions ,  launch operat ions ,  orbi ta l  

operat ions ,  flight operat ions ,  and end of life d isposal ,  and a r e  summar i zed  

he r e  along with thei r  impact  on des ign r equ i r emen t s  and c r i t e r i a .  

5. 1. 3 Ground and P re l aunch  Operations 

The basel ine  p r o g r a m  f ea tu r e s  a r e  summar i zed  in Section 5. 4. 

5. 1, 4 Launch Operations 

The launch configuration fo r  the propellant  module of the C la s s  1-H on the 

INT-21 i s  341-ft overa l l  height and p r e sen t s  no faci l i ty  height problems.  

The RNS propellant  module i s  designed to comply with the INT-21 ground, 

launch, and a scen t  des ign load envelope, compatible with c u r r e n t  des ign 

loads  fo r  the S-IC and S-11. Th is  imposes  a policy of ut i l izing a wind-biased 

launch t r a j e c to ry  and accepting a m in imum seasona l  launch availabil i ty of 

85  percen t  f o r  winter  winds (F igu re  5-6).  F o r  the launch of a standard 
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Figure 5-6. INT-21 Launch Implications of RNS Configurations 
- 

Class  1, the availabil i ty i s  decreased  to 60 percent.  The propulsion module 

for e i ther  Class  1 o r  3 i s  launched in  an unfueled condition. The NERVA 

engine contains a neutron-absorbing poison w i r e  safety sy s t em during launch 

to prevent  accidenta l  cri t icali ty.  This safety s y s t e m  i s  removed a f te r  orbi t  

i s  achieved p r io r  to RNS assembly .  

5. 1. 5 Orbital  Operations 

The RNS i s  maintained in  a gravi ty-gradient-s table ,  local-ver t ica l  orientat ion 

during a l l  rendezvous and docking maneuvers  to min imize  RNS attitude control  

requ i rements .  The impact  of a s sembly  and maintenance operations on 

candidate configurations was  a s se s sed .  

The C l a s s  1 Hybrid vehicle consis ts  of t h r ee  d i s c r e t e  modules.  Marntenance 

i s  pe r formed  by replacing these  modules analogous to ini t ial  orbi ta l  assembl\ . .  

The command and control  module (CCM) i s  recycled to the ground a f te r  each 

mi s s ion  for  maintenance and replenishment  of the expendables (APS propel-  

l an t s  and fuel cell  r eac tan t s ) .  The space shutt le i s  the bas ic  orbi ta l  support 

sy s t em and no additional faci l i t ies  o r  sy s t ems  a r e  required.  



F o r  in i t ia l  orbi ta l  a s s e m b l y  the CCM i s  launched f i r s t ,  followed by the 

propellant  module.  The  CCM rendezvouses  with the propellant  module and 

docks to it .  Then the propulsion module i s  launched by the space  shutt le  

(F igu re  5 -7 ) .  It is deployed and s e p a r a t e s  i tself  f r o m  the space  shut t le  and 

main ta ins  a s table  at t i tude using i t s  cold-gas at t i tude control  sy s t em.  The  

se l f -propel led  RNS a s semb lage  then docks to the propulsion module. During 

CCiU rep lacement ,  the old CCM removes  i t se l f ,  leaving the RNS stabil ized 

by gravi ty  gradient .  

The approach  fo r  a s s e m b l y  and maintenance in the C la s s  3 concept i s  

analogous to  that f o r  the C la s s  1 Hybrid with the exception of the addit ional  

r equ i r emen t s  imposed by the mul t ip le  propellant  module configuration. The 

propellant  modules  a r e  a s s emb led  ini t ial ly in the sequence indicated in 

F igu re  5- 8 employing end-to-end docking and rotat ing the outboard modules  

into the c ruc i fo rm  c lus te r .  The top of the RNS i s  completed f i r s t ,  the CCM 

i s  at tached,  and then the bottom i s  assembled  with the propulsion module 

l a s t .  Two space  tugs a r e  requ i red  fo r  the a s s e m b l y  and c lus te r ing  operat ions  

to both s tabi l ize  the vehicle and pe r fo rm  the module rota t ions .  A v e r y  s m a l l  

Figure 5-7. Orbital Assembly-Class 1 H 
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Figure 5-8. Class 3 Assemblv and Maintenance Concept 
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propulsion requ i rement  f o r  these  operat ions  would pe rmi t  u s e  of a n  RNS 

CCM to p e r f o r m  the r o l e  of a tug. A c ruc i fo rm  C la s s  3 configuration was 

se lected.  Fluid and e l ec t r i c a l  in te r faces  a r e  accomplished in  orbi t  usillg 

r e m o t e  a s s e m b l y  mechan i sms .  

The approach  to implement ing the module docking and functional a s s emb l y  

operat ions  i s  depicted in F i g u r e  5-9. F i r s t ,  docking i s  accomplished w i  b 

a probe and drogue mechan ism.  A deployable soft probe i s  used s o  that 

docking fo r ce s  a r e  not requ i red  to ac tuate  the sys tem.  This  mechan ism 1s 

used to d raw the modules  together over  the f inal  3 in. so  that a  s e t  of 

cable-actuated l a tches  can be engaged to lock the modules  together.  A f t e r  

s t r u c t u r a l  latching i s  completed,  fluid l ine coupling i s  initiated with a 

remote-coupl ing mechan i sm  a s  shown. A s c r e w  jack mechan i sm  delsloys the 

l ine  a c r o s s  the in terface  and a coupling mechan i sm  c loses  over  the flangc- 

to complete  the mating.  A dua l - sea l  flange i s  provided fo r  l eak  check of  the  

in terface .  After  fluid l ine coupling i s  completed,  the e l e c t r i c a l  automatrc 

panel a s s emb ly  i s  accomplished uti l izing a ball  s c r e w  jack d r i ve  t o  engage 

the socket  and recep tac le .  Guide pins a r e  employed fo r  both the fluid line 

coupling and the e l e c t r i c a l  panel  a s s emb ly  to en su re  al ignment,  All these  

operat ions  appear  feas ible .  
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PROBE AND DROGUE DOCKING MECHANISM 
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Figure 5-9. Orbital Assembly Interface 
- 

xendezvous const i tu tes  a r r i v a l  of the o rb i t e r  in the proximity  (500 f t )  of the 

RNS staging and a s s e m b l y  a r e a .  Two phases  of t e rmina l  rendezvous  a r e  

closed loop, utilizing r a d a r  acquisi t ion of the RNS assemblage .  A s table  

orbr t  c l o su re  t r a j e c to ry  i s  used which t e rmina t e s  the c lo su re  maneuve r s  

within the shadow cone provided by the NERVA radia t ion shield (F igu re  5-10). 

The orbi ta l  t r an s f e r  mode  i s  e ssen t ia l ly  l ine of sight  over  the 500 ft r ange  

f r o m  the o rb i t e r  to the RNS. Sensor  and t h ru s to r  a c c u r a c i e s  w e r e  evaluated 

and found adequate f o r  automated operation.  The cold-gas at t i tude control  

s y s t e m  of the propulsion module stabil ized the a s semb ly  during CCM rep l ace -  

men t  and was  s ized to accommodate  m i s s e d  docking operation.  

P rope l lan t  r esupp ly  i s  a  m a j o r  o rb i t a l  suppor t  operation.  F o r  propellant  

r  esuppl~r ,  a  s table  orbi t  maneuver  i s  used to keep the dose  received by the 

f i r s t  c rew,  docking 48 hours  a f t e r  shutdown and staying 24 hours ,  to about 

1 REM. Before  initiating the miss ion ,  propellant  i s  vented to r e j e c t  the 

heat  f r o m  propellant  chilldown and orbi ta l  heating during refueling. F o r  

propellant  t r a n s f e r ,  a  l inear  acce le ra t ion  t r an s f e r  i s  ut i l ized with th rus t  

provided by the space  shutt le .  T r a n s f e r  l ine chilldown i s  accomplished 
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during the sett l ing period. A two th rus t  set t l ing p r o g r a m  i s  used where  the 

f i r s t  se t t l es  the propellant  gently and a second l a r g e r  th rus t  d i s s ipa tes  the 
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Figure 5-10. Rendezvous and Docking 
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Checkout of orbi ta l  a s sembly  in terfaces  i s  provided by the CCM o r  space  tug 

during the a s sembly  operations.  The RNS p e r f o r m s  autonomous onboard 

checkout for  the orbi ta l  countdown. Component functional check i s  utilized 

to avoid the consumption of expendables and NERVA cr i t ica l i ty  associa ted 

with simulated operations.  Except for  a sma l l  i nc r ea se  in ins t rumentat ion 

no additional  component:^ o r  subsys tems  a r e  requ i red  to accomplish  RNS 

checkout. Checkout capabil i ty i s  provided with bulk s to rage  of procedures .  

The  p roces so r  r a t e  requ i rements  a r e  sma l l  and can be  handled off-peak. 

5. 1. 6 Flight  Operations 

An autonomous navigation and guidance capability was  selected over a 

ground-directed sys tem.  The at t i tude r e f e r ence  i s  common for  this  approach 

and r ep re sen t s  only a modes t  i nc r ea se  i n  software.  Sufficient a ccu racy  i s  

provided with a n  autonomous approach,  and a n  independent ground tracking 

backup i s  provided. 



The RNS pruvides  onboard data  evaluation. Evaluation of p r o c e s s o r  requ i re -  

men t s  indicated that s tage  functions could be sa t is f ied  with a single state-of-the- 

a r t  p r o c e s s o r .  Data compre s s ion to  the ground would be uti l ized i n  e a r t h  o rb i t  

to t r a n s m i t  to ground s ta t ions  without requir ing a r e l ay  sa te l l i te .  Ground data  

p rocess ing  would be employed to accomplish  fault predic t ion.  

Since the propuls ion module  pa r t i c ipa tes  in  a l l  opera t ions  and contains a l l  of 

the propellant  managem-ent functions requ i red  f o r  the s tage ,  i t  i s  key to the 

RNS hybrid configuration. The RNS propellant  management  operat ions  a r e  

shown with r e f e r e n c e  to the propulsion module in  F igu re  5- 11. 

The feed s y s t e m  f o r  both the s tage  and engine a r e  conditioned during the 

s t a r t up  operat ion employing an  in tegrated s tage/NERVA chilldown sys t em.  

A s epa ra t e  pump is a l so  located in  the feed s y s t e m  to ref i l l  the run  tank, if 

required,  be fore  s t a r tup .  Settling i s  completed a t  high t h ru s t  using the 

N E R V A  s t a r t up  t h ru s t  r amp.  A t h ru s t  hold i s  in tegra ted into the s t a r t u p  

r a m p  a t  the throt t le  point to p e r m i t  propellant  set t l ing with z e r o  NPSP. 

Euring the autogenous s t a r t up  operat ions ,  the s m a l l  volume of the propulsion 

module run  tank r educes  the p r e s s u r a n t  demand on NERVA. The 10, 800-lb 
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Figure 5-1 1. Propellant Management Operations - -  -- - 



LH capaci ty  of the run tank i s  sufficient to pe rmi t  autonomous operat ion 
2 

dur ing s tar tup,  a f t e r  cooling, and sho r t  burns .  I ts  l imi ted volume reduces  

LH sett l ing r equ i r emen t s  f o r  sho r t  burns .  The autonomous operat ion of the 
2 

r u n  tank p e r m i t s  bootstrapping the propellant  tank p ressur iza t ion  during 

NERVA fu l l - th rus t  operation.  P rope l lan t  level  control  i s  ut i l ized in the run  

tank and i t s  deplet ion dur ing s t a r t up  i s  l imi ted ( 5, 000-lb LH min imum)  to 
2 

r e t a i n  i t s  benefit fo r  reducing the radia t ion dose  to equipment located a t  the 

top of the run  tank. 

P rope l lan t  acquis i t ion fo r  af tercool ing i s  provided with a su r f ace  tension 

device.  This  operat ion i s  a l s o  simplif ied by the reduced r u n  tank volume. 

MDAC adopted the ground ru le  of only supplying sa tu ra ted  liquid conditions 

dur ing aftercooling s ince  m a j o r  advantages  w e r e  found in being able  to 

opera te  a t  reduced p r e s s u r e s  and sa tu ra ted  conditions, and no r e a s o n  was  

identified a s  to why i t  was  not a t ta inable  with the c u r r e n t  engine design. 

The su r f ace  tens ion pulse  baske t  concept was  adopted a s  a low weight, l e a s t  

complicated sys tem.  The  study identified the potential fo r  a n  8, 400-lb 

improvement  in payload de l ive ry  through u s e  of the cooldown impulse .  If 

the cooldown r equ i r emen t  w e r e  somehow eliminated,  the fu r t he r  potential 

payload improvement  would be  23, 540 lb. An evaluation of t he rma l  rad ia to r  

effectiveness indicated that a  s y s t em capable of re jec t ing only 100 to 250  kw 

would achieve m o s t  of the potential gain. 

A simplif ied propulsion module control  sy s t em was  devised which pe rmi t s  

independent operat ion of the propulsion module and accommodates  s t a r t up  

and shutdown r a m p s  with min imum additional p r e s s u r e  head built into the 

sy s t em.  This  s y s t e m  i s  based on knowing only where  the liquid level  

i s  located.  Dynamic s imulat ions  of malfunction modes  es tabl ished that 

liquid level  overshoot  during tank ref i l l  could be controlled and the s y s t e m  

would opera te  well  if the NERVA flow r a t e  demand was  reduced.  

F o r  th is  study 36 at t i tude maneuve r s  w e r e  a s s e s s e d  fo r  the r e f e r ence  m i s s i o n  

profi le  with a resu l t an t  r equ i rement  of 145, 000 lb - sec .  An a s s e s s m e n t  of 

total  APS impulse  r equ i r emen t s  fo r  a l l  opera t ions  totaled 450, 000 lb-sec .  

5. 1. 7 End-of-Life Disposal  Operations 

A r eusab l e  tug approach  was  adopted a s  a basel ine  mode  fo r  disposal. of the 

propuls ion module (F igu re  5- 12) .  
2 1 
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5 . 2  CLASS 1-HYBRID 

This  sect ion contains a br ief  desc r ip t ion  of the r eusab l e  nuclear  s t age  (RNS) 

C la s s  1-Hybrid concept. As  d i scussed  in the preceding section,  i t  i s  
mainta ined and replenished in e a r t h  orbi t  by the space  shutt le .  Both the 

Sa tu rn  V INT-21 launch vehicle and the space  shutt le  a r e  ut i l ized fo r  ini t ial  

deployment. 

A ske tch  of the r e f e r ence  configuration i s  shown in  F igu re  5-13. The t h r ee  

dis t inct  modules ,  which can be  assembled  and d i sassembled  i n  space ,  a r e  

shown. The propulsion module contains NERVA and a s m a l l  run  tank of 

propellant .  The propellant  module provides  the m a i n  propellant  tankage and 

min imal  propellant  management  subsys tems .  The  command and control  

module (CCM) i s  located a t  the fo rward  end of the s tage  and contains m o s t  

of the functional equipmerLt and a l l  of the expendables except  f o r  mains tage  

LH2. The aux i l i a ry  propuls ion engines a r e  located on ou t r iggers  on the 

CCM, The pitch, yaw, and ro l l  m o t o r s  a r e  a l l  of a  common s i ze  of 50-lb 

thrus t .  This module is rep laced  between mi s s ions  in e a r t h  orbit ,  thereby 

effecting a rep len i shment  of expendables and a l l  scheduled maintenance.  
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This  provides  effective maintenance because  over  90 percen t  of potential 

RNS f a i l u r e s  and m o s t  l i fe t ime- l imi ted equipment a r e  located on this  module.  

Both the propulsion module and the CCM a r e  designed to be t ranspor ted  lo 

e a r t h  o rb i t  within the ca rgo  bay of the space  shutt le .  Th is  fac i l i ta tes  

rep lacement  of the CCM a s  noted, and of NERVA, a s  might be  required 

because  of f a i l u r e  o r  to extend the l i fe t ime of the RNS beyond that of the 

engine. The RNS i s  resupplied with LH2 in  e a r t h  orbi t  by the space  shutt le .  

All modules  a r e  designed fo r  automated,  r emo te  a s s e m b l y  in  e a r t h  orbi t  

under  the control  of the CCM. A probe ldrogue  docking s y s t e m  i s  employed. 

A l a s e r  r a d a r  ranging s y s t e m  i s  provided on the CCM f o r  this  operation with 

optical  c o r n e r  cubes contained on the other  modules  to aid i n  al ignment and 

rendezvous operat ions .  

The to ta l  propellant  capacity of the s tage  i s  300, 000 lb  LH2, of which 10, 850 Ib 

is  contained in  the r u n  tank on the propulsion module.  The modules  ar-e, 

contained within a 10-degree  half-angle cone subtended by the NERVA reac to r ,  

de te rmined  f r o m  a combined optimization of s t r uc tu r a l  and shield weights. 



However, s epa r a t e  launch of a l l  modules  al lows the propellant  module to be  

launched on the Sa tu rn  V INT-21 launch vehicle without imposing the r equ i r e -  

men t  fo r  s t r uc tu r a l  modificat ions.  Both tanks a r e  fabr ica ted f r o m  integral ly  

stiffened a luminum alloy. The  fo rward  dome of the propellant  module tank 

and both domes  of the r u n  tank a r e  hemispher ica l  f o r  min imum weight. 

l sogr id  s t r u c t u r e  i s  used  on the CCM to aid equipment mounting. F i b e r -  

g l a s s  composi te  s t r u c t u r e s  a r e  employed for  load t r an smi s s ion  between 

modules  and fo r  the t h ru s t  s t r u c t u r e  in  o r d e r  to l imi t  heat t r an s f e r  to the 

propellant  while providing a n  efficient s t r uc tu r a l  configuration. The rma l  

insulat ion i s  provided by t h r ee  blankets of h igh-performance insulat ion 

consist ing of a l t e rna t e  l a y e r s  of doubly aluminized m y l a r  and dac ron  net. 

Meteoroid protect ion i s  provided to the tank and to this  insulat ion by a l aye r  

of f lexible foam and a n  outer  f iber  g lass  shroud.  This  s y s t e m  was  se1ecte.d 

on the ba s i s  of hypervelocity impac t  t e s t s  on this  and other candidate 

protect ion s chemes .  

Near ly  autonomous operat ion of the propulsion module i s  provided with the 

propellant  module function l imi ted to resupply  of the run  tank during full 

power operation.  All s t a r tup ,  shutdown, and af tercool ing operat ions  a r e  

pe r fo rmed  autonomously by the propulsion module.  Redundancy i s  employed 

in a l l  of the propellant  management  components. A unique f ea tu r e  of th is  

des ign i s  the provis ion of a pump-fed rec i rcu la t ing  chilldown s y s t e m  for  

conditioning both NERVA and the RNS feed ducting p r i o r  to s t a r tup .  Operation 

of this  s y s t e m  i s  in tegra ted with the s t a r t up  sequence uti l izing the autonomous 

capabil i ty provided by the run  tank on the propulsion module.  

The propulsion module contains a s impl i f ied 's tored gas  at t i tude control  

sy s t em which u s e s  hydrogen gas  and i s  r echarged  f r o m  the NERVA engine. 

A control  sy s t em incorporat ing gyros  and control  logic i s  provided. 

A n  autonomous navigation capabil i ty i s  provided in  the CCM. Two s e t s  of 

a c c e l e r o m e t e r s  a r e  used  to cover  impulse  management  dur ing aftercooling 

a s  well  a s  ful l-power operation.  Redundant centra l ized p r o c e s s o r s ,  capable 

of sat isfying a l l  s tage  and NERVA process ing  r equ i r emen t s ,  a r e  connected 

to a cen t ra l  high-speed m e m o r y  to f o r m  the RNS process ing  complex. A 



bulk s to rage ,  aux i l i a ry  m e m o r y  unit holds a l l  opera t ional  and checkout 

p rocedu re s  and data  f o r  ful ly autonomous functional and checkout operatio11 

of the RNS. A data  bus s y s t e m  i s  used fo r  communication between these  

p r o c e s s o r s  and other subsys t ems  on the CCM and the other modules .  Two 

data  bus  t e rmina l s  a r e  dedicated to NERVA. One i s  provided fo r  the NDICE 

on the CCM with the other  provided on the propulsion module fo r  NERVA. 

The data  bus s y s t e m  i s  configured on the b a s e s  of s y s t e m s  being developed 

fo r  the space  shuttle. 

The p r i m a r y  power source ,  consist ing of dual  fuel  ce l ls ,  i s  contained on 

the CCM. Additional secondary  power fo r  peaking and emergency  power i s  

provided by rechargeab le  AgZn ba t t e r i e s  on the CCM and on the propulsion 

module. Fue l  ce l l  r eac tan t  s t o r age  i s  common with that  of the cryogenic 

APS propellant .  Both the fuel  ce l l  and aux i l i a ry  propulsion s y s t e m  ut i l ize  

equipment being developed for  the space  shutt le .  

An independent, hardwired emergency  detection s y s t e m  providing emergency  

commands  a s  well  a s  as t ronau t  d isplay and manua l  ove r r i de  i s  provided, 

Ground t e l eme t ry  and uplink communications a r e  pe r fo rmed  by redundant 

t r a n s m i t t e r s  and r e c e i v e r s  compatible with c u r r e n t  space  communications 

networks.  

A weight s t a tement  for  the RNS C la s s  1-Hybrid concept i s  given in Table 5-1. 

A compar i son  with the C l a s s  3 concept desc r ibed  in the next sect ion i s  a l s o  

shown. 

5 . 3  CLASS 3 RNS 

This  sect ion contains a br ief  desc r ip t ion  of the RNS C l a s s  3 concept. It i s  

launched, mainta ined,  and replenished in e a r t h  o rb i t  by the space  shutt le ,  

A ske tch  of the r e f e r ence  configuration i s  shown in  F igu re  5- 14. It cons i s t s  

of t h r e e  dis t inct  types  of modules  designed f o r  launch to orbi t  inside t h e  

15-ft d i ame te r  by 60 ft c a rgo  bay of the space  shutt le ,  which can  be  assembled  

and d i sassembled  in  space .  The propulsion module contains NERVPL and a 
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sma l l  r un  tank of propellant .  Th is  fac i l i ta tes  rep lacement  of NERVA, a s  

might  be requ i red  because  of fa i lu re  o r  to  extend the l i fe t ime of the RNS 

beyond that of the engine. A CCM is located a t  the forward end of the stage.  

It contains m o s t  of the functional equipment and a l l  of the expendables except 

mains tage  LH This  module i s  replaced between mi s s ions  in ea r th  orbit ,  
2' 

t he reby  effecting a rep len i shment  of expendables and a l l  scheduled maintenance.  

P r i m a r y  propellant  i s  contained in  the mult iple propellant  modules ,  These  

contain min ima l  propellant  management  subsys tems .  The m a i n  feed sy s t em 

provides  communication f r o m  any propellant  module to the run tank on the 

propulsion module.  It can be  s e e n  that this  concept i s  s im i l a r  to the C la s s  1-  

Hybrid concept desc r ibed  in the preceding sect ion with the mul t ip le  propellant  

modules  h e r e  pe r fo rming  the s a m e  function a s  the single propellant  module 

did there .  

The  vehicle configuration displayed was  se lected to optimize the connbined 

effects  of biological shield weight, which favors  max imum vehicle length; 

max imum stabil i ty and controllabil i ty,  which f avo r s  m in imum length; and 

min imum as semb ly  operat ions  assoc ia ted  with the outboard modules .  The 

base l ine  configuration employs  four tandem propellant  modules  which, in 

conjunction with the sma l l  solid angle subtended by the run  tank on the 

propulsion module,  precludes  the requ i rement  f o r  any biological shield.  

A fully adequate  m a r g i n  of safe ty  i s  maintained fo r  vehicle stabil i ty and 

controllabil i ty.  The c ruc i fo rm  a r r a y  of outboard propellant  modules  

s impl i f ies  a s s e m b l y  and c lus te r ing  operations.  

The RNS design and operat ions  concept m in imize s  orbi ta l  suppor t  

r equ i rements .  The space  shutt le  i s  employed to del iver  rep lacement  modules  

and resupply  propellant .  A space  tug is uti l ized to suppor t  a s s e m b l y  and 

rep lacement  of modules  and to safe ly  dispose  of expended propulsion modules .  

No permanent ,  manned,  orbi ta l  fac i l i t ies  a r e  requ i red  fo r  maintenaiice o r  

propellant  r e  supply. 

Equipment se lect ion for  the C l a s s  3 concept para l le led  that f o r  the 

C la s s  ]-Hybrid desc r ibed  in  Section 5. 2. Maximum efficiency i s  required of 

the structural/thermal/meteoroid protect ion des igns  resul t ing f r o m  the 



i n c r ea sed  number  of modules  and su r f ace  a r e a .  Functional  subsys t em 

definition again  m a d e  extensive u s e  of equipment being developed for  the 

space  shutt le  s ince  th is  i s  considered to be  a leading p r o g r a m  element.  

A91 capabil i ty a t t r ibuted to the CCM and propulsion module for  the C l a s s  1- 

Hybrid i s  a l s o  provided f o r  Class  3. 

Table  5-. 1 shows the weight penalty assoc ia ted  with C la s s  3 which m u s t  be  

t raded agains t  the lower  launch costs .  The f i r s t  four  en t r i e s  ( s t r uc tu r e ,  

me t eo ro id / t he rma l ,  docking/c lus ter ing,  and m a i n  propulsion) show a 

significant  advantage fo r  the s ingle  module concept. This  r e su l t s  f r o m  

the inherent  inefficiencies of the mult iple-module configuration including 

the i nc r ea sed  su r f ace  a r e a  and mul t ip le  equipment requ i red  fo r  a s s e m b l y  

and hookup. On the other hand, the C la s s  3 concept has  no biological shield 

r equir  ernents and significantly lower  propellant  r es idua l s .  

Despi te  this  weight disadvantage the RNS C la s s  3 configuration s t i l l  has  good 

per fo rmance  capability, excellent  m i s s ion  f lexibil i ty through var ia t ion in  

number  of propellant  modules ,  and p r e sen t s  no s e r i ous  feasibil i ty questions.  

5 . 4  PROGRAM SUMMARY 

P r e l i m i n a r y  development p rog rams  w e r e  defined fo r  both ve r s i ons  of the 

RNS. Based upon the p r o g r a m  guidelines and cons t ra in t s  and the t imes  

requ i red  to accompl i sh  m a j o r  development ac t iv i t ies ,  a  period of 5 y e a r s  

wil l  be requ i red  to br ing a n  RNS s y s t e m  to flight t e s t  s t a tus  following 

P h a s e  D ATP. Moreover ,  the e a r l y  availabil i ty of E/STS-2 fo r  bat t leship  

tank inst;allation and facil i ty checkout, beginning in e a r l y  1976, i s  c ruc ia l  to  

accomplishing s y s t e m s  development test ing a t  NRDS on a t imely  b a s i s  fo r  

providing s y s t e m s  des ign information.  

5. 4, 1 RNS P r o g r a m  Activit ies 

5. 4. 1. 1 Clas s  1 Hybrid 

The m a j o r  ac t iv i t ies  fo r  the C la s s l -Hybr id  RNS a r e  depicted in  the context 

of the Continental United Sta tes ,  along with a n  indication of the methods  of 

t r anspor ta t ion  used between the activi ty c e n t e r s  in F igu re  5-15.  The 
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Figure 5-15. Class 1 Hybrid RNS Program Activ~t~es 

engineering design of the RNS modules  and the in tegrated s y s t e m  i s  

envisioned a s  being done i n  the exist ing Space Sys t ems  Cente r  faci l i t ies  a t  

Huntington Beach. Additionally, Sys tems  Integration Labora tory  (SIL) and 

Special  Docking Simulator  (SDS) t e s t  ac t iv i t ies  a r e  planned for  Huntington 

Beach to be eas i ly  available to engineering personnel.  The SIL will consis t  

of an  act ive  mockup to define e lect romechanical  in te r faces  and aid in  the 

design of the GSE. The propulsion module r u n  tank a s sembly  and the C CM 

would be manufactured within exist ing faci l i t ies  a t  Huntington Beach, and the 

recycl ing of operational  CCM will be  performed on the s a m e  production l ine 

to avoid having to provide duplicate capabil i ty a t  KSC. 

The C la s s  1 -Hybrid RNS p r o g r a m  a s  cu r r en t l y  defined will u s e  the 

NASA-Michoud facil i ty for  f inal  a s sembly  of the propellant  module, s ince  

the Huntington Beach faci l i t ies  will not accommodate  33-ft-diameter modules 

without modifications. Following final  a s sembly  and a d r y  functional sy s t em 

checkout a t  Michoud, the propellant  module wil l  be t ranspor ted  to M T F  for  

LH cold-flow production acceptance t e s t s ,  and subsequently taken by ba rge  
2 

di rec t ly  to KSC for  launch o r  re tu rned  to Michoud for  s torage.  



One propellant  module  wil l  be  t r anspor ted  to Southern  California by ba rge  

f o r  u s e  i n  the a l l - sy s t ems  t e s t  p r o g r a m  a t  NRDS. It wil l  be  moved from the 

Sea l  Beach ba rge  dock to NRDS by helicopter .  

T e s t  p r o g r a m s  have been identified a t  Sacramento ,  whe re  Propuls ion  

Integration Labora to ry  (P IL)  ac t iv i t ies  wil l  be  conducted in a modified 

Beta t e s t  complex, a s  well  a s  NRDS, whe re  a l l  NERVA power t e s t s  wil l  be 

conducted. The P I L  wil l  cons i s t  of a  mockup which s imula tes  the physical  

a r r a n g e m e n t  of propulsion s y s t e m  components. It wil l  b e  used  to a s s e s s  

physical  in te r faces  and fluid dynamic cha rac t e r i s t i c s  of LH in  the plumbing 2 
and tanks.  The NRDS tes t ing will b e  pe r fo rmed  with the engine ha rdware  

operated separa te ly ,  a s  wel l  a s  in  conjunction with s tage  bat t leship  and 

a l l - sy s t ems  t e s t  hardware .  

Activi t ies a t  KSC will  include NERVA/run tank mat ing  to  f o r m  the completed 

propulsion module,  a s  wel l  a s  the p repara t ion  and launch of RNS modules  and 

the r e t u r n  of the CCM in the  space  shutt le  o rb i t e r  fo r  t r anspor ta t ion  to 

Huntington Beach  fo r  refurbishment .  

The p r i m a r y  t ranspor ta t ion  modes  used fo r  the RNS modules  a r e  b a r g e s  and 

a i r c r a f t ,  such  a s  the Guppy. The CCM will  be  t r anspor ted  exclusively by 

a i r c r a f t ,  and b a r g e s  wil l  be  used exclusively fo r  t r anspor t ing  the propellant  

module,  with the exception of the helicopter  f o r  moving the a l l - sy s t ems  t e s t  

ha rdware  to NRDS. The propulsion module run  tank a s s e m b l y  wil l  be  moved 

b y  a i r c r a f t  f r o m  Huntington Beach  to  NRDS and Michoud/MTF,  and wil l  be  

moved to KSC by ba rge  with the propellant  module a f t e r  they complete  

production accep tance  tes t ing a t  MTF.  

5. 4. 1. 2 C la s s  3 

The m a j o r  p r o g r a m  act iv i t ies  fo r  the C la s s  3 RNS a r e  depicted in F igu re  5-16 

and located on a m a p  of the Continental United Sta tes ,  along with i l lus t ra ted  

methods  of t r anspor ta t ion  used between the act iv i ty  cen te r s .  

The .major cen te r  of ac t iv i ty  f o r  the C la s s  3 p r o g r a m  i s  planned to be  a t  the  

MDAC Space Sys t ems  Cente r  in  Huntington Beach,  whe re  the RNS design 

act iv i t ies  wil l  be  conducted, a s  wel l  a s  the fabr ica t ion  and final  a s s e m b l y  of 
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a l l  modules.  The max imum 15-ft d i ame te r  of the modules  i s  compatible with 

the capabi l i t ies  of exist ing manufacturing faci l i t ies  a t  Huntington Beach, which 

wil l  provide the proximity  of production ac t iv i t i e s  to engineering personnel  

fo r  efficient operation.  F o r  the s a m e  r e a s o n  of proximity to engineering,  

the Sys tems  Integration Labora to ry  (SIL,) and Special  Docking Simulator  JSDS) 

t e s t  ac t iv i t i e s  a r e  a l s o  planned fo r  Huntington Beach, a s  well  a s  command 

and control  module  r e cyc l e  operations.  

T e s t  p r o g r a m s  have been identified a t  Sacramento ,  whe re  Propuls ion 

Integration Labo ra to ry  ( P I L )  ac t iv i t ies  and production acceptance test ing of 

modules  wil l  be  conducted in  a modified Beta t e s t  complex,  a s  well  a s  NRDS, 

where  a l l  NERVA power t e s t s  wil l  be  conducted. The NRDS tes t ing will be 

pe r fo rmed  with the engine hardware  operated separa te ly ,  a s  well  a s  in 

conjunction with s tage  bat t leship  and a l l - sy s t ems  t e s t  ha rdware .  R N S  

modules  wil l  a l s o  be  s to red  a t  Sacramento.  

Activi t ies at KSC will  include NERVA/run tank mat ing to f o r m  the completec1 

propuls ion module,  a s  well  a s  the p repara t ion  and launch of KNS modules and 



the r e t u r n  of the  command and control  module i n  the space  shutt le o rb i t e r  

fo r  t ranspor ta t ion  to Huntington Beach for  refurbishment .  

The p r i m a r y  t ranspor ta t ion  modes  used fo r  the RNS modules  a r e  ba rges  and 

a i r c r a f t ,  such  a s  the Guppy. The command and control  module will be  t r a n s -  

por ted exclusively by  a i r c r a f t ,  and ba rges  wil l  b e  used to t r anspo r t  the 

propellant  modules  and propulsion module r u n  tanks f r o m  Sacramento  to KSC 

following production acceptance test ing.  Ai rc ra f t  wil l  be  used to f e r r y  single 

propellant  modules  and propul'sion module r u n  tanks f r o m  Huntington Beach 

to Sacramento  fo r  production acceptance test ing.  Ai rc ra f t  wil l  a l so  be used 

exclusively fo r  t ranspor t ing RNS modules f r o m  Huntington Beach to NRDS 

for  a l l - sy s t ems  testing. 

5 . 4 . 2  RNS P r o g r a m  Schedule 

An abbreviated vers ion  of the RNS p r o g r a m  schedule i s  shown in  F igu re  5-17, 

with act iv i t ies  t ime  phased re la t ive  to the IOC date. Separa te  p r o g r a m  

schedules  w e r e  formulated for the C la s s  1-Hybrid and C l a s s  3 RNS during 

the P h a s e  I11 effort ,  but they a r e  a l m o s t  identical  except for  sl ight  d i f ferences  

YEARS FROM IOC 
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in production acceptance tes t ing act iv i t ies ,  etc. The  schedule shown he re  i s  

applicable to e i the r  RNS concept. A period of 5 y e a r s  f r o m  P h a s e  I3 A T P  to 

f i r s t  flight has  been identified, a s  wel l  a s  another  period of 1- 112 y e a r s  

between f i r s t  flight and the IOC date.  

Miles tones  fo r  availabil i ty of impor tan t  t e s t ,  manufacturing,  and launch 

faci l i t ies  a r e  shown, and a r e  compatible with en t r i e s  on the m a j o r  mi les tone 

char t .  The t e s t  p r o g r a m  schedules  a r e  predicated upon the availabil i ty of 

the requ i red  faci l i t ies .  The bat t leship  and a l l - sy s t ems  t e s t  p r o g r a m s  a t  

NRDS a r e  compr i sed  of a n  ini t ial  cold-flow checkout phase  with a NERVA 

s imula to r ,  followed by full-power t e s t s  us ing NERVA. The bat t leship  wil l  

a l s o  s e r v e  a s  a ground t e s t  module fo r  subsequent engine development t e s t s .  

The  manufactur ing ac t iv i t i e s  f e a tu r e  the field fabr ica t ion of bat t leship  t e s t  

ha rdware  fo r  the C l a s s  1 -Hybrid, with field fabr ica t ion  being optional f o r  

C l a s s  3. In e i ther  c a se ,  the schedule i s  the same.  The a l l - sy s t ems  tes t  

ha rdware  production and the flight t e s t  a r t i c l e  production act iv i t ies  ove r -  

l ap  by approximately  9 months ,  implying a higher production r a t e  to sa t is fy  

both r equ i r emen t s .  F o r  the Class  3, this  would not r equ i r e  two complete  

vehicles,  s ince  a l l - sy s t ems  t e s t  vehicle u s e s  only one propellant  module.  

The  production r a t e  shown i s  one RNS per  yea r ,  and the total number  of RNS 

s y s t e m s  produced re f lec t s  a p r o g r a m  with a m i s s i o n  r a t e  of s i x  per  year .  

The flight t e s t  ac t iv i t ies  include a 6-month period fo r  launching the RNS t o  

orbi t ,  a s sembl ing  the mi s s ion  vehicle, checking i t  out, etc.  This  i s  m o r e  

impor tan t  f o r  a Class  3 sys tem.  After the f i r s t  launch, a year  i s  provided 

to p e r f o r m  a s e r i e s  of t e s t  objectives,  evaluate the t e s t  data,  perfol-m a n  

e a r t h  o rb i t  turnaround of the RNS, and pe r fo rm  a r epea t  s e r i e s  of t e s t s  p r i o r  

to  committ ing the RNS to i t s  f i r s t  opera t ional  miss ion .  

5 . 4 . 3  Cos t s  

The RNS p r o g r a m  cos t  s u m m a r y  ( level  2 )  i s  presented in Table  5 - 2  for  the 

C la s s  1-Hybrid and Table  5-3 fo r  the C l a s s  3. The data  a r e  presented a s  a 

function of candidate m i s s ion  r a t e s  of 2,  4, 6, and 8 mi s s ions  per y e a r .  

The nonrecur r ing  (DDT&E) cost  i s  a  summat ion  of the  one- t ime expenditul-es 

assoc ia ted  with the engineering,  fabr ica t ion,  and test ing of the RNS and i t s  



Table 5- 2 

CLASS- 1H PROGRAM COST SUMMARY::' 

Miss ion Rate 

Nonrecurr ing DDT& E 

Launch Vehicle Pro jec t  

Launch Operations 
Pro jec t  

Reusable Nuclear Stage 
P ro j ec t  

Miss ion Operations 

Recur r ing  (Product ion and 
Operations) 

Launch Vehicle Pro jec t  

Launch Operations 
Pro jec t  

Reusable Nuclear Stage 

Miss ion Operations 

P r o g r a m  Total 

:::All co s t s  in mill ions of 1971 do l la r s .  
Table 5- 3 

CLASS-3 PROGRAM COST SUMMARY':: 

Miss ion Rate 

4 / Y r  6 / Y r  

Nonrecurr ing (DDT&E)  

Launch Operations 

Reusable Nuclear Stage 

Miss ion Operations 

Recur r ing (Product ion and 
Operations) 

Launch Operations 

Reusable Nuclear Stage 

Mission Operations 

Pr0gra .m Total 

:::Ail cos t s  in mill ions of 1971 do l la r s .  



support ing p ro jec t s .  The cos t  e s t ima t e s  w e r e  made  a t  the subsys tem and 

a s semb ly  l eve l s  and summed to yield total  p r o g r a m  cost .  

Included in  the DDT&E es t ima t e  i s  the charge  fo r  one flight t e s t  a r t i c l e  and 

the suppor t  r equ i red  to p e r f o r m  two simulated t e s t  m i s s ions .  The D D T & E  fo r  

the RNS-1H p r o g r a m  i s  $965. 5 mi l l ion while the C l a s s  3  r equ i r e s  $842. 3 

mill ion.  The m a j o r  d i f ference i s  the r equ i r emen t  f o r  the launch vehicle 

p ro jec t  (INT-21) f o r  the C la s s  1-Hybrid. 

Of the r e c u r r i n g  cos t s ,  m i s s i o n  operat ions  i s  the l a r g e s t  expenditure.  As 

i n  the c a s e  of the DDT&E, the p r i m a r y  cost  d i f ference i s  a  r e su l t  of the 

launch vehicle project  r equ i rement  fo r  the INT-21. 

The RNS project  cos t s  a r e  defined to the s y s t e m  level  ( level  4)  in Table 5-4 

fo r  the C l a s s  1-Hybrid and Table 5-5 fo r  the C l a s s  3  RNS's.  The C la s s  1 -  

Hybrid DDT&E cos t  i s  $728. 7 mi l l ion while the C la s s  3  r e q u i r e s  $706. 3 

mill ion.  The two configurations differ p r i m a r i l y  in  the s y s t e m  level  test ing 

(ha rdware  and opera t ions )  and the development assoc ia ted  with the respec t ive  

propellant  module (s ) .  The C la s s  3 ,  because  of i t s  mult iple-module 

configuration, r e q u i r e s  m o r e  extensive s y s t e m  level  t e s t s  and assoc ia ted  

t e s t  ha rdware .  However the eight propellant  modules  associa ted with this 

configuration have sufficient s i m i l a r i t y  to allow common development. As 

a r e su l t ,  although m o r e  expendi tures  a r e  requ i red  fo r  s y s t e m  level  test ing,  

th is  i s  offset by reduced propellant  module development cos ts .  The net  

r e su l t  is a lower  Class  3  development cost .  

The  to ta l  p r o g r a m  funding fo r  the two RNS configurations i s  shown in  

F igu re  5-18. The p r i m a r y  di f ference between the funding schedule 

assoc ia ted  with the two candidate configurations i s  the requ i rement  fo r  the 

purchase  of INT-21 launch vehicles.  As  a r e su l t  a  peak funding of $523 mil l ion 

i s  r equ i red  in  f i sca l  year  1982 f o r  the C la s s  1H. During l a t e r  y e a r s  ( f i sca l  

yea r  1984 and beyond) the funding requ i rement  ave r ages  about $350 mill ion.  

These  data  a r e  f o r  a basel ine  6 mi s s ion  per  yea r  r a t e .  As the m i s s ~ o n  r a t e s  

a r e  var ied ,  the ave r age  funding r equ i r emen t  i s  changed by about $60 mi l l ion 

per  year  fo r  each additional m i s s i o n  per  year .  F igu re  5-18 a l s o  p r e sen t s  

the RNS pro jec t  level  funding schedule.  Only one schedule i s  shown s ince  the 



Table  5 - 4  

C - 1 H PROJ  E C  T G OS T SUMMARY ':' 
Table  5 -5  

CLASS-3 P R O J E C T  COST SUMhU.RY::: 

Mission Rate Mission Rate 

21Yr 4 l Y r  61 Yr 8 I Y r  

Nonrecurr ing (DDT&E) (706.3)  (706.3) (706.3)  (706 .3 )  

Propulsion Module 

Propel lant  Module 

Propulsion Module 42.5 

Propel lant  Module 45 .6  

Command and Control 
Module Command and Control 

Module 149.2 

Test  Hardware 
T e s t  Hardware 129. 0 

Test  Operations 

Faci l i t ies  

T e s t  Operations 63 .9  

Faci l i t ies  5 6 . 4  

Ground Support 
Equipment Ground Support 

Equipment 

Pro jec t  Management 
Pro jec t  Management 25. 7 

Recur r ing  (Product ion and 
Operations) Recur r ing  (Product ion and 

Operat ions)  (230. 0) (373. 0) (516. 1 )  (658. 1 )  
Propulsion Module 

Propulsion Module 3 5 . 5  68.2 101.0 1 3 3 . 3  
Propel lant  Module 

Propel lant  Module 32. 2 57 .8  82. 7 106. 7 
Command and Control 
Module Command and Control 

Module 64.1 113.3 161.8 210 .1  
Test  Operations 
(Acceptance)  Tes t  Operations 

(Acceptance) 
Ground Support 
Equipment Ground Support 

Equipment 21.5 26.6 30. 5 35. 2 

SE&I 62. 8 82. 9 105. 6 127 .8  
Pro jec t  Management 

Pro jec t  Management 9 . 2  14. 9 20. 5 26 .3  
--  - 

Pro jec t  Total 936.3 1 ,079 .3  1 , 2 2 2 . 4  1 , 3 6 4 . 4  
Total 

:::All cos t s  in millions of 1971 dol lars .  
:?All cos t s  in mil l ions of 1971 dol lars .  
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Figure 5-18. RNS Program/Project Funding Schedule-6 MissionsIYear 

funding r equ i r emen t s  a r e  v i r tual ly  identical.  It can  be  s een  that  the RNS 

project  i s  only a  s m a l l  f rac t ion  of the total  funding requ i rements .  

The cost  effectiveness of the RNS-1H configuration, measu red  i n  t e r m s  of 

do l la r s  pe r  pound del ivered,  was  based on a  m in imum energy  lunar  miss lon.  

The payload del ivered,  a s suming  a  20, 000-lb payload r e t u r n  i s  128, 000  Ib 

fo r  the RNS- 1H and 108, 000 lb  f o r  the RNS-3. The ave rage  r e c u r r i n g  p rog ram 

cost  pe r  flight va r ied  between $73 and $76 mil l ion f o r  the C la s s  1  Hybrid and 

$65 and $68 mil l ion f o r  the C la s s  3  ref lec t ing m i s s i o n  r a t e  of 8  pe r  year  and 

2  pe r  y e a r  respect ively .  The corresponding t ranspor ta t ion  cos t  i s  $575 /1b 

and $602/lb fo r  the C l a s s  1  Hybrid and $602/lb and $634/1b fo r  the Glass  3. 

Inc reas ing  the space  shutt le  capabil i ty f r o m  33, 000 lb  to 50, 000 l b  into ea r t h  

o rb i t  (260 n m i  by 31. 5  d e g r e e s )  while keeping the ca rgo  volume the same,  

r e su l t s  i n  a n  ave rage  reduct ion of $10 to $15 mil l ion per  flight with a 

corresponding reduct ion of $80 to  $88/lb in  t r anspor ta t ion  cos t  fo r  the RNS-1H 

and RNS-3 respect ively .  



Section 6 

STUDY LIMITATIONS 

The two main factors  limiting resul ts  f r o m  the Phase I11 RNS sys tem definition 

study concerned interfaces with the ear th launch vehicle and with NERVA. 

Adequate study guidelines were provided to define these elements and their  

character is t ics  so a s  not to negate the study effort. However, these uncer -  

tainties limited the scope of the study. Most of the additional study effort 

suggested in Section 8 i s  directed toward resolution of these uncertainties 

either th.rough direct study activities or  through utilization of data generated 

on complementary programs.  

Use of the nuclear stage in a shuttle mode operating out of low earth orbit  i s  

dependent upon the logistics support of the space shuttle. However, concep- 

tion and definition of the space shuttle has  had substantial impact upon the 

current  stable of ear th launch vehicles. As discussed in Section 4 under 

method of approach, the Phase I11 study was limited to two RNS concepts: one 

launchecl into ear th orbit  by the Saturn V INT-21 launch vehicle and the other 

launchecl within the cargo hold of the space shuttle and assembled in orbit. 

This limitation in study scope was necessary  because launch vehicle and 

launch mode data sufficient to complete the definition of a Class 2 RNS system 

concept were not available a t  that t ime. 

Some incompatibilities exist between the current  NERVA interface design a s  

defined by the engine contractor and the desired character is t ics  defined under 

this Phase I11 study. Some of these incompatibilities a r e  due to the changing 

concepts in the transportation mode f r o m  earth to ear th orbit  (i. e . ,  space 

shuttle vs  INT-21 launch environment) and some a r e  due to the fact that the 

engine definition leads the stage definition by such a wide margin. 

Additionally, a 10, 000-lb disk shield i s  being designed for  NERVA and, 

although removable, space and s t ructural  capabilities a r e  being provided 

for it. (Current RNS concepts do not require  this size shield to provide 

man rating. In fact, the Class 3 concept requires  no biological disk shield a t  

all .  Other major uncertainties exist with respect  to the location and autonomy 

of NDICE, the location of multiplexing and signal conditioning of NERVA data, 



and whether NERVA i s  disassembled f r o m  the stage in one or  severa l  sub- 

assemblies  in orbit, o r  whether it becomes an  integral par t  of a propulsion 

module employing a standard docking interface with the other RNS modules. 

An a rb i t r a ry  definition of some of the physical interface details concerning 

s t ructural  attachments and fluid line locations has  been necessary  in order  to 

allow NERVA to proceed a s  a development item. However, some significantly 

different recommendations a r e  made a s  a resul t  of this Phase 111 study. 

Section 7 

IMPLICATION FOR RESEARCH 

No feasibility problems have been found which would prevent a commitrnent to 

development of the RNS. However, there  a r e  supporting r e sea rch  and tech- 

nology questions concerning some of the baseline subsystem features.  In 

general these consist of uncertainties in the design cr i te r ia  which a r e  applied 

and would be reflected a s  variations in the sys tem weight. These i tems will 

be identified and described briefly. 

The top pr ior i ty  SRT i tems will be discussed f i r s t .  Fur ther  SRT in the a r e a  

of high-performance insulation will have a major impact on the RNS. It will 

be necessary  to establish certainty on the performance of current  systems 

and to establish design cr i te r ia  for  full-scale installation. F iber  gla,s s tank 

supports have been selected for  the RNS to enhance propellant storage, but 

data i s  lacking on the mechanical propert ies  and fatigue of these s t ructures  in 

a radiation environment and a vacuum a t  cryogenic temperatures .  A.n integral 

a r m o r  concept has  been selected for  the RNS using low density polyurethane 

foam and a fiber glass  p r imary  bumper. Additional effort i s  required to 

establish prec ise  damage cr i te r ia  f o r  meteoroid protection. 

Titanium tankage has  the possibility of a major RNS weight improvement, 

about 10 percent of the iner t  weight, compared to the current  baseline rnateriitl 

of 2014-T6 aluminum. The minimal requirement to achieve this weight 

improvement would be SRT in the a r e a s  of f rac ture  toughness and lai-ge scale 

manufacturing. 



There  i s  a var ie ty  of SRT i tems  concerning propellant dynamics and propellant 

management. Data a r e  required on propellant settling c r i t e r i a  applied to  the 

p r e s t a r t  settling fo r  the RNS. Aftercooling propellant acquisition uti l izes a 

surface tension device and confirmation of the c r i t e r i a  f o r  these i s  required.  

A lack o.f data on boiling heat  t r ans fe r  in low gravity conditions provides 

uncertainty concerning chilldown p roces ses  fo r  two situations: p r e s t a r t  feed 

sys-te m chilldown and propellant r e  supply. 

Prolonged orbi ta l  coast  periods will make propellant stratif ication a significant 

consideration for  the RNS design. The implications of nonequilibrium heating 

of the ullage gas must  a l so  be established. A major  factor  for  these propellant 

technology i s sues  will be to accomplish them in ea r ly  orbi ta l  exper iments  on 

propellant fluid dynamics and thermo dynamics. Various experiments have 

been proposed in  the past  (Pro jec t  THERMO) and fur ther  consideration of such 

experiments  should include RNS requirements .  

The major  as t r ion ics  SRT requirement  i s  a space resident computer sys t em 

which would achieve a substantial  increase  in the MTBF f r o m  approximately 

10, 0 0 0  hours  a t  cu r r en t  technology to 50, 000 hours  for  RNS requirements .  

Additional data a r e  required concerning the effects of the NERVA radiation 

environment on a var ie ty  of mater ia l s  considered for  the RNS design. In this 

context i t  should be emphasized that the RNS design configuration has  great ly  

reduced the impact of the radiation environment on i t s  subsystems. 

A var ie ty  of technologies have been identified which provide product 

improvements  f o r  the RNS, largely based on the development requirements  

fo r  leading p rog rams  such a s  space shuttle. These include f r ac tu re  mechanics 

development to a s s u r e  reliable proof testing, improvement  of weld joints, 

fa i lure  prediction techniques, dormant fa i lure  r a t e  data, evaluation of long 

life charac te r i s t ics  fo r  components, and surface coating performance in space. 

The cryogenic APS sys t em technology developed for  space shuttle would be 

applicable to the RNS. Although not a p a r t  of the RNS design c r i te r ia ,  develop- 

ment of efficient propellant t r ans fe r  technology will significantly affect RNS 

transportation costs.  



Section 8 

SUGGESTED ADDITIONAL E F F O R T  

Major  emphas i s  f o r  subsequent study effort  should be di rected toward 

resolution of the uncer ta int ies  noted in  Section 6. These  we re :  ( 1 )  definition 

of an  RNS concept consis tent  with a l ternat ive  launch vehicles now being 

defined a s  p a r t  of the  space shuttle definition effort  and (2 )  resolution of both 

the functional and physical  in te r face  d i sc repanc ies  between NERVA and the 

RNS. Another category f o r  additional study effort  r e su l t s  f r o m  r e a s s e s s m e n t  

of the ro le  of the nuc lear  stage, based on NERVA, in the future  NASA space 

p r o g r a m  and potential evolutionary modes  f o r  NERVA deployment. 

As d i scussed  in  Section 4 an  a t t rac t ive  concept, designated a s  RNS C la s s  2, 

was  identified during Phase  11. C la s s  2 sy s t ems  a r e  par t icular ly  important  in  

view of the questionable availability of the Saturn V launch vehicle which would 

e l iminate  the cu r r en t  concept f o r  C la s s  1. However, an RNS concept employ- 

ing a single propellant  module but launched by an a l ternat ive  launch vehicle 

can be considered i n  conjunction with the fu r the r  definition of C la s s  2, 

A s e t  of candidate launch vehicle configurations compatible with the C l a s s  2 

RNS vehicle which span multiple module to single module configurations a r e  

shown in F igure  8-1. Concept A shows two concepts fo r  placing 260 in. d ia-  

m e t e r  modules in  low e a r t h  orbi t  where  they can be  assembled  a s  an  RNS. The 

one on the left  u s e s  a n  S-IVB s i ze  s tage with solid s t rapons  and the one on the 

r ight  i s  a s t re tched  260-in. d i ame te r  stage.  Concept B depic ts  two possible 

orbi t  inse r t ion  s tages  to place a l a rge  33-f t -diameter  propellant  module in 

orbit.  This  would lead to an  RNS configuration s i m i l a r  to the C la s s  1 Hybrid, 

Concept C i s  a modification which u s e s  the RNS propellant  modules to coiitain 

the liquid hydrogen for  launch. There fore  the Orbit  Inser t ion Stage hardware  

i s  only represen ted  by an oxygen tank and engine. An evaluation of these  

a l ternat ives  would lead to an optimum Cla s s  2 configuration which can be 

taken to  the s a m e  level  of depth a s  the C la s s  1H and 3 configurations. 

The  second m a j o r  a r e a  recommended for  future  study involves resolut ion of 

the NERVA stage interface-both functionally and physically. Table 8- 1 l i s t s  

the m a j o r  a r e a s  of uncertainty in  the functional and physical  in terface  Setween 



CONCEPT A CONCEPT B CONCEPT C 

Figure 8-1. Candidate Ground Launch Concepts 

Table 8-1 

NERVAISTAGE INTERFACE UNCERTAINTIES 
- -- 

Functional Physical  

Structural  dynamics 
during launch 

Engine conditioning 

Biological shield 
requirements  

NDICE integration 

Structural  

Manufacturing and a s  s embly 
tolerances  

Fluid line number,  location, 
and valving 

Elec t r ica l  line t ransi t ion 

NERVA and the stage. The f i r s t  entry  under the functional interface, s t ruc-  

t u ra l  dy:namics during launch, i s  important since NERVA was designed for  

launch on the 33 -f t -diameter  module by the Saturn V INT-2 1 launch vehicle. 

The launch mode and launch support  fo r  the cur ren t  RNS concepts which 

launch t'he engine in the cargo bay of the space shuttle should be considered 

in establishing s t ruc tura l  dynamics loading for  NERVA. During Phase  111, 

a cbilldown sys tem was defined which would condition NERVA before engine 



startup.  This system, o r  derivatives f r o m  it, should be considered for 

inclusion in definition of the NERVA interface. Additionally, engine condi- 

tioning requirements  on the launch pad during launch and in ear th  orbit  

should be derived and included in establishing NERVA requirements, ,  The 

cur ren t  launch mode, in which the propulsion module i s  launched in the d ry  

condition, represen ts  a significant depar ture  f r o m  the present  requirements  

The third functional interface listed, the biological shield requirements  

which a r e  imposed upon NERVA to mee t  nuclear stage capability for man-  

rating, should be resolved considering cur ren t  candidates which have much 

lower shield weight than heretofore.  The final functional interface uncertainty 

involves consideration of the integration of NDICE with the RNS as t r ion ics  

sys tems .  This includes the location for  ,multiplexing engine signals a s  well 

a s  the actual  location fo r  the NDICE .module. The physical interface i t ems  

l isted a r e  relatively self-explanatory. The i r  resolution will  require,  however, 

selection of a n  RNS configuration and par t icular ly  the level  of assembly and 

disassembly of the stage /NERVA physical interface.  

The third  category of i t ems  suggested for additional study effort  der ives  f r o m  

cur ren t  and projected programmat ic  considerations for  both the nuclear stage 

and NERVA. Consideration of recent  funding changes i n  the NERVA p rog ram 

will requi re  redefinition of the NERVA development schedule which, of course,  

impacts  the RNS development schedules contained within this Phase  I11 study. 

Additionally, the role  that a nuclear  stage based upon NERVA can play in a l l  

of the future  space missions should be a s se s sed  and related to  the new NERVA 

development schedule. This can include consideration of the use  of the nuclear 

stage for  e a r l i e r  p r e c u r s o r  miss ions,  such a s  injection of l a rge  unmanned 

planetary probes,  and then subsequent evolution to  a full RNS capability. 

Timing of the space shuttle development and i t s  applications needs to be 

considered in this evaluation since the RNS, par t icular ly  i t s  propellant, 

represen ts  a major cargo for  the space shuttle. 
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